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This paper shows that the most predictable components of inter-
nal variability in coupled atmosphere–ocean models are remark-
ably similar to the most predictable components of climate models
without interactive ocean dynamics (i.e., models whose ocean
is represented by a 50-m-deep slab ocean mixed layer with
no interactive currents). Furthermore, a linear regression model
derived solely from dynamical model output can skillfully predict
observed anomalies in these components at least a year or two
in advance, indicating that these model-derived components and
associated linear dynamics are realistic. These results suggest that
interactive ocean circulation is not essential for the existence of
multiyear predictability previously identified in coupled models
and observations.

decadal prediction | decadal predictability | average predictability time |
CMIP

In recent years, climate prediction on decadal time scales has
gained increased attention because of its growing scientific,

geopolitical, and societal importance (1–5). Sources of decadal
predictability often are divided into two kinds: predictability
caused by external forcing, such as changes in solar insola-
tion, volcanic aerosols, and anthropogenic greenhouse gases, and
predictability due to internal variability arising naturally from
the coupled atmosphere–ocean–land–ice climate system (6). Cli-
mate models suggest that certain structures of internal vari-
ability in sea surface temperatures (SST), such as the Atlantic
Multidecadal Oscillation (AMO) and Pacific Decadal Oscilla-
tion (PDO), are predictable on decadal/multidecadal time scales
(5, 7–9). The precise mechanisms for this decadal predictabil-
ity are not clear, although the dynamics of ocean circulation are
widely believed to play a major role (10–17).

Recently, a few studies have challenged the notion that inter-
active ocean dynamics play a dominant role in decadal pre-
dictability (18, 19). These studies are based on integrations of
atmospheric global circulation models coupled to a slab ocean
mixed layer, in which ocean circulation is a prescribed function of
time and the ocean interacts with the atmosphere only thermo-
dynamically, through radiative, sensible, and latent heat fluxes.
Despite the absence of interactive ocean dynamics, these mod-
els can produce realistic variability that is predictable on inter-
annual and longer time scales. For example, El Niño–Southern
Oscillation (ENSO)-like variability can arise on interannual and
decadal time scales from such models (20–22). Also, the main
features of the observed AMO (e.g., spatial pattern, power
spectra, and associated atmospheric circulation) have been
reproduced in models without interactive ocean dynamics (23).
However, not all details of these simulations are perfect: In some
locations, the lag correlation between AMO and surface heat flux
has the opposite sign relative to coupled models and observations
(14, 15). On the other hand, these heat fluxes tend to be nearly
canceled by the ocean heat transport convergence on long time
scales (24), raising questions as to their true role. In any case, the
fact that many features of AMO variability can be reproduced
without interactive ocean dynamics suggests that the accompa-
nying surface heat fluxes in coupled models may not be playing
a driving role. Moreover, the existence of competing hypothe-

ses for the same phenomena suggest that the mechanisms of the
AMO, and decadal predictability in general, are far from settled
science.

Despite the above suggestive results, there exists no compre-
hensive assessment of decadal predictability without interactive
ocean dynamics. What are the dominant patterns of decadal vari-
ability in systems without ocean dynamics? Are these patterns
similar to those of systems that capture ocean dynamics? Do the
patterns derived from systems with and without interactive ocean
dynamics have similar time scales? Do they have similar dynam-
ics? How would multiyear predictions by the two systems com-
pare in terms of skill? The purpose of this paper is to answer
these questions. We will show that the dominant patterns of
decadal variability in atmosphere–slab ocean models are remark-
ably similar to those in fully coupled atmosphere–ocean mod-
els, not only in terms of spatial scale but also in time scale and
predictability. We also will show that empirical models derived
from these dynamical models can produce skillful predictions of
observed SSTs.

To answer the above questions, we analyze two different sets
of simulations from the Coupled Model Intercomparison Project
3 (CMIP3). Both sets are “control” runs in which external forc-
ing is held fixed at their preindustrial settings, ensuring that the
only mechanism for decadal predictability is internal variability.
The first set comes from fully coupled climate models with inter-
acting atmosphere, land, ocean and sea ice components; these
models will be called “coupled.” The other set of simulations
uses the same atmospheric model as in the coupled simulations,
but the ocean model is a 50-m-deep slab mixed layer model;
these models will be called “slab.” Although the slab model has
a periodically varying ocean heat transport (the so-called “Q-
flux”), this transport is noninteractive in the sense that it is a
prescribed function of time and is independent of the ocean–
atmosphere variability. Thus, the slab model contains no inter-
active ocean dynamics. Further details of the models are given in
Table 1.

Significance

Accurate climate predictions on 10-y time scales are commonly
assumed to require climate models with interactive ocean
dynamics. This paper shows that the most predictable com-
ponents in climate models without interactive ocean dynam-
ics are remarkably similar to those in models containing inter-
active ocean dynamics. In addition, linear models trained on
either type of climate model can skillfully predict observed
temperature variations a year or two in advance. The results
suggest that mechanisms of decadal climate predictability
might be much simpler than previously thought, in particu-
lar, that they are dominated by thermodynamic ocean physics
coupled to a stochastic atmosphere without interactive ocean
dynamics.
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Table 1. List of CMIP3 models used for this study

Length of Length of
slab ocean fully coupled

Model models in years models in years Resolution

CCCMA CGCM3 1 30 500 3.75◦ × 3.75◦

CCCMA CGCM3 1 T63 30 350 2.8◦ × 2.8◦

CSIRO MK3 0 60 380 1.875◦ × 1.875◦

GFDL CM2 0 50 500 2.0◦ × 2.5◦

GFDL CM2 1 100 500 2.0◦ × 2.5◦

GISS MODEL E R 120 500 3.9◦ × 5.0◦

INMCM3 60 330 4.0◦ × 5.0◦

MIROC3 2 HIRES 20 500 1.125◦ × 1.125◦

MIROC3 2 MEDRES 60 100 2.8125◦ × 2.8125◦

MPI ECHAM5 180 1,000 3.75◦ × 3.75◦

MRI CGCM2 3 2A 100 350 2.8◦ × 2.8◦

NCAR CCSM3 450 500 0.90◦ × 1.25◦

UKMO HADGEM1 70 240 1.25◦ × 1.75◦

Next, we determine the most predictable components in
coupled and slab models using a procedure called average
predictability time (APT) analysis (25). This procedure deter-
mines an uncorrelated set of components ordered by predictabil-
ity, where predictability is measured by an integral time scale
of the predictable variance (see Data and Method). This opti-
mization method allows decadal predictability to be identified
in monthly data, as opposed to annual mean data that are used
in most other studies on decadal predictability. Accordingly, we
analyze monthly mean 2-m temperature, although, for complete-
ness, we note that repeating our calculations using annual mean
data yields similar results. Predictability is maximized in a multi-
model sense by pooling simulation data together. As a result, the
sample size in our statistical analysis is very large, even though
individual model simulations may be relatively short (e.g., some
slab simulations last only for 20 y).

To render APT analysis well posed and to mitigate overfit-
ting, maximization of APT is performed in a low-dimensional
subspace. Specifically, all temperature fields are projected onto a
small number of predetermined patterns. These patterns are the
leading eigenfunctions of the Laplace operator over the analysis
domain, which capture large-scale features and filter out small
spatial structures. These patterns depend only on the geometry
of the domain, in contrast to commonly used empirical orthogo-
nal functions, and hence are independent of data, thereby facil-
itating comparisons across models and data sets. These patterns
are obtained from a recently developed Green’s function tech-
nique (26), and are projected onto monthly temperature fields
to yield time series. The resulting time series are then linearly
combined to maximize APT.

An interesting question in our analysis design is whether the
basis vectors for maximizing predictability should be global or
restricted to individual ocean basins. If decadal predictability
in the Atlantic and Pacific arise from different mechanisms,
then global basis vectors may lead to failure to detect local-
ized predictability, or may give a misleading impression of the
spatial extent of predictability. To investigate this issue, APT
analysis was applied to the union of five Laplacian eigenfunc-
tions from the Pacific plus five Laplacian eigenfunctions from
the Atlantic. If predictability were localized in each basin sep-
arately, then APT analysis would indicate that fact by produc-
ing predictable components with loadings in just the Atlantic or
just the Pacific. When we perform this calculation, APT analy-
sis always yields global patterns, suggesting that the most pre-
dictable components in climate models have global expressions.
This result does not necessarily imply that the mechanisms are
global. For instance, the mechanism could be local, whereas

the response may be global. Indeed, ENSO arises from cou-
pled dynamics localized in the equatorial Pacific, yet it has a
global expression through Rossby wave teleconnection mecha-
nisms. Similarly, climate models show that, when one basin is
forced on multidecadal time scales, the other oceans (which are
free to adjust) vary in synchrony (27). If a predictable compo-
nent has a global expression, then it is beneficial from a sta-
tistical point of view to use global basis vectors to improve
the signal-to-noise ratio, even if the mechanisms giving rise to
that predictability are local. Moreover, the mechanisms that
dominate decadal predictability could very well be global (28).
In any case, analyzing global basis vectors is not incompatible
with the hypothesis of local mechanisms of predictability. For
the above reasons, we chose global basis vectors to maximize
predictability.

Data and Method
The model data analyzed in this study are monthly 2-m temper-
atures from simulations of 13 models from CMIP3. The model
details are given in Table 1. The observed monthly SST is from
the Extended Reconstructed Sea Surface Temperature dataset,
version 3b (ERSSTv3b) (29) for the period 1901–2015. The
observed Nino3.4 index is from the UK Met Office Hadley Cen-
tre’s Sea Ice and Sea Surface Temperature dataset (HadISST1)
(30); it is the area averaged SST from 5◦S to 5◦N and 170◦W
to 120◦W (https://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/
Nino34/). The observed AMO index is the 12-mo running mean
index using Kaplan SST V2 (https://www.esrl.noaa.gov/psd/data/
timeseries/AMO/). The PDO index is downloaded from Univer-
sity of Washington/JISAO (http://research.jisao.washington.edu/
pdo/PDO.latest.txt). All indices have been smoothed using a
12-mo running mean. We have used monthly SSTs because the
difference between 2-m air temperature and surface temperature
is negligible on monthly or longer time scales.

Laplacian eigenfunctions were derived on a 5◦× 5◦ domain
bounded by 50◦S to 60◦N. The eigenfunctions are orthogonal
with respect to an area-weighted norm, and thus the least-
squares amplitude of each eigenfunction can be obtained by pro-
jection. The eigenfunctions were truncated to 10 and projected
onto monthly temperature fields of each model and simulation.
The resultant time series were centered, detrended, and season-
ally adjusted, yielding a data matrix Xt of dimension 10×N ,
where N is the number of months. The time-lagged covariance
matrix of a single model C′τ is computed as (Xt+τXT

t )/N , where
Xt+τ denotes time series shifted by lag τ , and superscript T
denotes the matrix transpose. Covariances were computed for
each model and simulation separately. A similar procedure was
performed on monthly observed SST data, except that, instead
of removing a trend, a best-fit third-order polynomial was sub-
tracted to remove most of the forced signal, yielding Laplacian
time series Yt and time-lagged covariance matrix Cobs

τ .
Decadal predictions from CMIP3 dynamical models are not

available. Accordingly, prediction skill is estimated by regres-
sion methods. Specifically, a linear model that predicts the future
amplitude of 10 Laplacian eigenfunctions based on their present
values is defined as

X̂t+τ = LτXt , [1]

where τ is lead month and the caretˆdenotes a prediction. The
least-squares estimate of the prediction operator Lτ is

Lτ = CτC−1
0 , [2]

where Cτ denotes the multimodel average covariance matrix.
The prediction operator is estimated from dynamical model sim-
ulations without using any observations, and is estimated for each
lead month separately.

We seek the most predictable component of the linear
regression model Eq. 1. This component is derived by finding
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Fig. 1. Most predictable component in coupled and slab models. Most pre-
dictable component is derived by maximizing the APT separately in coupled
and slab models. (A and B) Spatial pattern of the most predictable com-
ponent in the (A) coupled and (B) slab models. Each pattern is normalized
such that the time series multiplied by the pattern gives the temperature
variations (in degrees Celsius) due to this component. (C) Projection of the
most predictable pattern onto monthly observed SST, smoothed with a 1-y
running mean (blue and red curves, respectively). The correlation between
coupled and slab projected time series is indicated in the bottom right leg-
end. (D) The predictability (Eq. 3) of a linear prediction model that predicts
the component in dynamical models. (E and F) The forecast skills (Eqs. 5 and
6) of a linear prediction model that predicts the component in observations.
In D–F, the dashed line shows the mean-square error of a forecast based on
the climatological mean. The time scale of the predictability and forecast
skills is defined by the time (lag) when the red and blue curves intersect the
dashed curve.

coefficients of a linear combination of variables (hereafter,
weights) that maximize APT. Let the weights be the vector q,
so that taking a linear combination yields the time series qTXt .
The predictability of a component is measured by the correlation
between predicted and actual value,

Rτ = cor
[
qT X̂t+τ , qTXt+τ

]
. [3]

The quantity R2
τ measures the fraction of variance predictable

by the regression model Eq. 1 at lead time τ . We are interested
in a measure of predictability that is independent of lead time;
therefore, instead of maximizing predictability at an arbitrary
lead time τ , we maximize R2

τ summed over 60 mo, which yields a
quantity called APT,

APT = 2

60∑
τ=1

R2
τ . [4]

APT is, effectively, an integral time scale as commonly used
in turbulence studies to measure eddy time scales. Theoretically,
a component remains predictable until R2

τ vanishes. Maximiz-
ing APT leads to a generalized eigenvalue problem (31) in which
the eigenvalues give the APT values (in units of the time step,
here 1 mo) and the corresponding eigenvectors give the weights
q for deriving the most predictable component time series qTXt .
Similarly, the projection of a predictable component on observa-
tions is defined as qTYt . Once the weights q are known, the pre-
dictability R2

τ of the predictable components can be computed
using Eq. 3.

Forecast skill in observations is measured in two ways. First,
the normalized mean-square error (NMSE) is defined as,

NMSE = ‖qT (Yt+τ − LτYt)‖2/‖qT (Yt)‖2, [5]

where q · q is the Euclidean distance. The other metric is the ρ2τ ,
where ρτ is the forecast correlation skill measured as

ρτ = cor
[
qTYt+τ , qTLτYt

]
. [6]

Results
The most predictable component in coupled and slab models is
shown in Fig. 1. Although some differences can be seen between
the two patterns, especially in the northern latitudes, the large-
scale structures are remarkably similar. An immediate question
is whether the differences in spatial structure are important.
One approach to quantifying the importance of these differ-
ences is to project the pattern onto observations and compare
the resulting projection coefficients. If the projection coefficients
for the two patterns are close, then differences in spatial struc-
ture can be said to be minor, in the sense that they have a minor
impact on their corresponding time series, which are the cen-
tral quantities in predictability theory. The time series obtained
by projecting these patterns on observations are shown in
Fig. 1C. As can be seen, the two time series are very similar—
their correlation is 0.92—indicating that differences in spatial
structure are relatively minor in terms of their corresponding
time series (and thus their predictability). Thus, the differences
in spatial structure seen in Fig. 1 A and B should not be inter-
preted too literally. The spatial patterns resemble the PDO, but
the corresponding projected time series are modestly correlated
with the observed PDO index (0.56 in slab and 0.35 in coupled
models).

The predictability of the most predictable component is shown
in Fig. 1D and is nonzero even after 5 y, confirming that this com-
ponent is predictable on multiyear time scales in the coupled and
in the slab model.

Next, we use the prediction model Eq. 1 to predict the
observed amplitude of the most predictable component. Because
observations were not used for model estimation, observational
data constitute genuinely independent verification data for the
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Fig. 2. The second predictable component in coupled and slab models.
Same as in Fig. 1, except for the second-most predictable component.
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Fig. 3. The third predictable component in coupled and slab models. Same
as in Figs. 1 and 2, except for the third-most predictable component. The
black curve in C shows the observed 1-y-smoothed Nino3.4 index; the cor-
relation between each projected time series and the observed ENSO index
is indicated in the parentheses after “slab” and “coupled” in the right leg-
end, and the correlation between coupled and slab projected time series is
indicated in the bottom right legend.

prediction model. This approach avoids questions related to fit-
ting and validating regression models with the same observa-
tional data. The skill based on NMSE (Fig. 1E) hits the zero line
in a couple of years, demonstrating that this component can be
skillfully predicted a couple of years (1 y to 2 y) in advance. Simi-
lar conclusions are obtained using correlation skill (Fig. 1F). The
fact that the skill of the regression model derived from slab mod-
els is comparable to that from coupled models is striking consid-
ering that the slab model does not contain any interactive ocean
dynamics, aside from simple thermodynamic mechanisms associ-
ated with heat storage.

Because the most predictable pattern can be predicted skill-
fully for only a couple of years, one might question whether the
term “decadal” is appropriate. In fact, many components with
multidecadal time scales, such as the AMO and PDO (after the
forced response has been removed), appear to be predictable
for only a few years, despite having significant power on mul-
tidecadal time scales (32–35). The time scale of a variable is
sometimes identified with the period at which the power spec-
trum peaks, but this period should not be confused with the pre-
dictability time scale, which is more associated with the relative
width of the peak (36–38).

The second-most predictable component in coupled and slab
models is shown in Fig. 2. Both components have amplitudes
concentrated in high latitudes and opposing signs across hemi-
spheres (Fig. 2 A and B). Such predictable, interhemispheric
asymmetric patterns often are claimed to be driven by the
Atlantic Meridional Overturning Circulation (AMOC), but the
fact that the slab model can produce this pattern demonstrates
that interhemispheric asymmetric patterns can be generated
without invoking the AMOC. Projection of these patterns onto
observations yields similar time series, as indicated by the cor-
relation value of 0.83 (Fig. 2C). The projections are modestly
correlated with the observed AMO index (∼0.4 in coupled and
slab models). The coupled system has stronger predictability
and forecast skill than its slab counterpart (i.e., the blue curves
lie above the red in Fig. 2 D–F), suggesting that interactive

ocean dynamics play a larger role than in the first component.
Nevertheless, the slab models provide predictability beyond 2 y
and skillfully predict observations beyond 1 y. Interestingly, the
regression model uses only surface information, so whatever
ocean dynamics may be at play can be inferred from surface
variables.

The third-most predictable component in coupled and slab
models is shown in Fig. 3. This component resembles the
observed ENSO pattern. Incidentally, components 1 and 3 look
similar, but their projection on observations differ, and their pre-
dictabilities differ (indeed, their time series are orthogonal in the
models). Although the pattern in the slab run does not have max-
imum loading along the equatorial Pacific, its projection time
series is very similar to that of the coupled model pattern (cor-
relation of 0.96). Interestingly, the component in slab models is
correlated with the observed 1-y smoothed ENSO index almost
as well as the component in coupled models. Slab models provide
as much predictability and forecast skill (∼1 y) as coupled mod-
els, which is surprising because slab models do not contain the
oceanic Rossby and Kelvin waves associated with ENSO mech-
anisms. Also, the prediction skill of ENSO in current dynami-
cal and statistical models is less than a year (39–41). Subsequent
predictable components (i.e., components 4, 5, and 6) in slab and
coupled models show similar spatial structure, predictability, and
skill, but these are not shown, for brevity.

We emphasize that the two curves shown in Figs. 1 D–F,
2 D–F, and 3 D–F show the skill and predictability of two dif-
ferent patterns. Testing statistical significance of a difference in
skill or predictability of two different quantities is not straightfor-
ward. Nevertheless, physically, the range of skill and predictabil-
ity of the two components are “comparable.” It is also impor-
tant to recognize that, even if the predictable components were
not similar component by component, this would not necessarily
imply that the predictabilities differ. For instance, the patterns
could be identical but have different rankings. Alternatively, the
leading pattern of one model could be a linear combination of
leading patterns of another model, or the patterns of one model
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Correlation between observed index and the best-fit instataneous 
 combination of predictable components 
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Fig. 4. Correlation between observed index and the best-fit instantaneous
combination of predictable components. The correlation is computed using
a 12-mo running mean for the observed index and for the best-fit instan-
taneous combination of predictable components. The horizontal axis shows
the number of predictable components used to fit the observed index. The
blue and red curves show results for coupled and slab predictable compo-
nents, respectively. The black dashed line shows the maximum correlation
when all 10 predictable components are used.
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could be rotated in the same space as those of the other model.
In any of these cases, a component-by-component comparison
would be unsatisfactory, and a more comprehensive comparison
would be required.

The above comment is pertinent to relating our results to
traditional indices like the AMO or PDO. As mentioned ear-
lier, these latter indices have modest correlations with individual
model components, but this fact does not imply the two sets of
components are unrelated. For instance, the traditional indices
could be some linear combination of the components derived
here. To investigate this question, the observed AMO index was
fit to a linear combination of predictable components. The cor-
relation between the observed and best-fit AMO index is shown
in Fig. 4, Top, where the correlation is computed from a 12-mo
running mean of the two time series. The correlation based on
all 10 predictable components is 0.82, indicating that much of
the AMO variability can be captured by a linear combination
of predictable components. The figure shows that only six pre-
dictable components are needed to achieve this correlation. For
the PDO (Fig. 4, Middle), the maximum correlation is 0.78, again
indicating that much of the PDO variability is captured by the
most predictable components. Noticeably, the maximum corre-
lation for the ENSO (Nino3.4) index in Fig. 4, Bottom, is 0.94,
and the first three components are sufficient to capture this cor-
relation. It is important to note that, in contrast to the Nino3.4
index, the traditional AMO and PDO indices are not captured
by just the first two or three components, suggesting that the
AMO and PDO indices may not be the best indices of decadal
predictability as the leading predictable components. This con-
clusion is not necessarily surprising, because traditional indices
were not designed to maximize predictability; for instance, the
AMO is merely a spatial average over the Atlantic, and the PDO
is merely a leading empirical orthogonal function, which maxi-
mizes variance, not predictability. In contrast, ENSO seems to
be better identified with the most predictable components, and
hence is an appropriate target for predictability.

Admittedly, removing a third-order polynomial from the
observed SST data may not perfectly remove the forced signal.
Any leftover forced signal may contaminate our results, but the
fact that the predictable components have real forecast skill of
the order of years lends legitimacy to our conclusions.

Also, climate models suffer from significant biases that may
reduce or distort the influence of ocean dynamical processes. For
example, many coupled models tend to be too cold and fresh in
the North Atlantic, which may impact the forcing of the AMOC
by the North Atlantic Oscillation, and impact the coupling of

the AMOC with the surface ocean. Reducing these biases has
been found to change the character of decadal variability in cou-
pled models (42). Also, the above biases can alter the AMOC
from being thermally driven to being salinity driven, which also
likely impacts predictability (43). Despite these shortcomings,
this paper shows that empirical models derived from dynamical
models can skillfully predict observations for a few years, sug-
gesting that coupled and slab models still capture realistic aspects
of decadal predictability, despite certain biases and inconsisten-
cies with observations.

The similarity of predictable patterns, predictability time
scales, and forecast skills derived from coupled and slab models
strongly suggests that interactive ocean dynamics is not essential
for the existence of multiyear predictability previously identified
in coupled models and observations. Instead, the essential mech-
anisms of decadal predictability appear to involve atmospheric
processes and thermodynamic air–sea coupling. One often-cited
mechanism is the fact that the ocean mixed layer acts as an inte-
grator of short-period stochastic forcing from the atmosphere,
producing red power spectra from white noise forcing (44).
Other mechanisms such as cloud–SST feedback (45) and wind–
evaporation–SST feedback (46) may further redden the spec-
trum. We emphasize that we do not claim that ocean dynam-
ics play no role in decadal predictability. For instance, the skill
derived from coupled models tends to be higher than that from
slab models (Figs. 1 E and F and 2 E and F), although the dif-
ference is small in many cases. In the other cases, interactive
ocean dynamics appear to simply enhance or modulate decadal
predictability without significantly altering the spatial structure.
Indeed, components like the AMO and PDO are highly persis-
tent and can be predicted with skill by univariate regression mod-
els, but can be predicted with somewhat more skill if predictors
associated with ocean dynamics (e.g., ocean meridional circula-
tion or ENSO) are included as predictors (47, 48). There is no
doubt that ocean dynamics can produce variability over a huge
range of time scales, from days to millennia, but the degree to
which subsurface variability on decadal and multidecadal time
scales influences the atmosphere and continental land masses
(where humans live) remains to be quantified.
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